MANAGEMENT OF ACID SOIL

Dr. Vivek Kumar Pandey
Department of Environmental Science
VBS Purvanchal University Jaunpur

MAIN THEMES OF MANAGEMENT OF ACID SOIL POLLUTION

MAJOR TYPES OF POLLUTION

Calcium carbonate CaCo₃

Particle size distribution and efficiency

Crop residues

Natural Resources

Application of liming materials

Different liming material to reclamation of acid soil

Oxides - CaO

Hydroxides - Ca(OH)₂

Carbonates - CaCO₃

Silicate of calcium - CaSiO₃

Calcium carbonate CaCO₃

Lime is dissolved (slowly) by moisture in the soil to produce Ca2+ and hydroxide (OH-):

$$CaCO_3 + H_2O \text{ (in soil)} \rightarrow Ca^{2+} + 2OH^- + CO_2(gas) \text{ Equation (3)}$$

Newly produced Ca2* will exchange with Al3* and H* on the surface of acid soils:

Lime produced OH- will react with Al $^{3+}$ to form solid Al (OH) $_{3+}$, or it will react with H+ to form H $_2$ O as shown in equations 5 and 6.

$$0H^- + H^+ \rightarrow H_20$$
 Equation (6)

Oxides of lime

$$2CaO + Soil (H^++Al^{3+}) + H_2O$$
 Soil(Ca)+Al(OH)₃

Hydroxides of lime

$$2Ca(OH)_{2+}$$
 Soil $(H^+ + Al^{3+})$ Soil $(Ca)+Al(OH)_3 + H_2O$

Silicates of Calcium

$$2CaSiO_3 + 3H_2O + Soil (H^+ + Al^{3+})$$
 Soil $(Ca) + 2H_2SiO_3 + Al(OH)_3$

Solubility and qualities of lime

- Lime is lowly soluble in water- particles must be finely ground to neutralize soil acidity.
- Very small changes in the sizes of the particles have a major effect on the time required to dissolve them.
- Effectiveness depends Purity of the liming material & how finely it is ground.
- The lower the CCE value, the more lime you will need to neutralize the soil's acidity

- liming eliminates toxic Al³+and H⁺ through the reactions with OH⁻.
- Excess OH⁻ from lime will raise the soil pH, which is the most recognizable effect of liming.
- Another benefit of liming is the added supply of Ca²⁺·as well as Mg²⁺

Effects of over liming

- · Deficiency of Fe, Cu, Zn, P, K
- · Increment of OH activity may cause root injury
- · Over liming Boron deficiency occur
- Too much application of lime increase the pore space in the soil- soil dries up- efficiency of water use is low

Crop residues

- Soil pH changes after the addition of chickpea & canola residues.
- The greatest increase in soil pH occurred after chickpea addition as it is easily mineralized.
- · Chickpea has a potential alkalinity.
- The soluble fraction was the main source of alkalinity

- Basic cations which are released during decomposition of crop residuces increase the pH (Noble and Randall, 1999).
- The excess cation content, indicative of ash alkalinity,
 represents the liming potential of residues (Noble et al., 1996).

Residue	C:N ratio	Ash Alkalinity (cmol/kg)	
Chickpea	21:1	150	
Canola	40:1	130	
Wheat	64:1	45	

- The increase of Mg saturation was observed only with Karongi unburned lime application.
- Use of 2.8 t/ha of Rusizi or Musanze unburned lime as alternative to the agricultural burned lime – decrease soil acidity.

Reactions

- Organic manures mineralize- Ca ions are released into the soil solution.
- Ca ions get hydrolysis process.
- Calcium hydroxide formed reacts with soluble aluminum ions in the soil solution to give insoluble Al(OH)₃.

Hue et al. (1986),

Chemical composition of animal manure			
Animal manure	<u>Ca</u>	Mg	
Rabbit manure	1.37	2.16	
Swine manure	1.37	1.30	
Goat manure	1.37	0.83	
Poultry manure	1.24	0.89	
Cow manure	1.12	1.94	

Acidity under successive pig slurry applications

- Pig slurry application as soil manure can alter the chemical properties of the soil and affect its acidity, modifying the environment for crop growth and development.
- Deceased the acidity to a depth of 8cm.

Cledimar Rogério Lourenzi et al. 2008

Natural resources

- Nitrate leaching considered to be the dominant mechanism for accelerated acidification
- The growing of deep-rooted perennial pastures (lucerne) is seen as an answer to slowing the acidification process (Ridley et al. 1998).
- This could be achieved by perennial plants using available nitrogen more efficiently thereby reducing nitrate leaching.
- The native eucalypts increase the surface soil pH (Wilson 2002)

Conclusion

- Soil acidity is a serious problem in agricultural land
- We improve soil health practice various management practices
- · Based on soil test value recommend the fertilizer
- Judicious application of nitrogenous fertilizer
- To advice the farmer should know about soil test technology

